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We investigate the emergence of correlations in granular shear flow. By increasing the density of a simulated
granular flow, we observe a transition from a dilute regime, where interactions are dominated by binary
collisions, to a dense regime characterized by large force networks and collective motions. With increasing
density, interacting grains tend to form networks of simultaneous contacts due to the dissipative nature of
collisions. We quantify the size of these networks by measuring two-point force correlations and find dramatic
changes in the statistics of contact forces as the size of the networks increases.
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I. INTRODUCTION

Granular materials exhibit a wide range of fascinating be-
haviors �1�, but predictive theories linking the microscopic
grain interactions to macroscopic properties remain a topic
of much debate. Of particular interest are constitutive rela-
tions for granular flow, which are important for engineering
and geophysical applications �2,3� and challenge the tenets
of conventional statistical physics �4�. Because granular ma-
terials are athermal, their dynamics always occur far from
equilibrium, and a proper formulation of constitutive rela-
tions relies on the construction of nonequilibrium statistical
theories that must be sensitive to the interactions between
grains.

Interactions in realistic granular materials arise due to
grain elasticity and friction, but are complicated by various
other mechanisms, including humidity �5–9�, grain shapes
�10–12�, and fracture processes occurring within the material
�13�. A great deal of theoretical and computational progress
has been made using the simple approximation that grains
are spherical and perfectly dry �14�. In this case a purely
repulsive force arises when two grains come into contact due
to the deformation of grains and friction between grains.

Understanding the nature of grain forces and dynamics,
even in this relatively simple case, has proven difficult. At
very low densities it can safely be assumed that only binary
interactions occur, and constitutive relations can be deter-
mined by statistically tracking the repulsive force created in
each interaction. This is the basis of kinetic theory, which has
been successfully applied to granular flows �15,16�. How-
ever, for very large densities, it is observed that multigrain
contacts always occur �17–19� and contact forces are trans-
mitted through “force chain networks” formed by the topol-
ogy of the contact network �14,21–23�. For these high den-
sities the forces between contacting grains still arise from
grain deformation and friction, but the extent of the interac-
tions is not localized and depends on properties of the force
chain networks.

The presence of force chain networks calls into question
theories that assume localized interactions and has inspired
new models based on properties of the force chains �24–30�.
However, although force networks can be visualized, it has
proven difficult to measure quantitative correlations between
contact forces �31–34�. This led to the speculation that force

chain networks are simply a perceived correlation, until re-
cently, when spatial correlations were measured between the
averaged contact forces in a quasistatic experimental shear
flow at high density �23�.

This discovery raises important questions about the
proper assumptions to make when constructing theories of
granular materials. For very dilute systems only binary col-
lisions occur, and force chain networks do not play a role; for
very dense systems force networks are the dominant micro-
scopic interaction. In order to understand the origin of mac-
roscopic properties in granular flows, it is necessary to pin-
point exactly how and when correlations appear.

In this paper we measure spatial correlations of the total
force on grains undergoing shear deformation. This measure-
ment defines a characteristic length scale � quantifying the
size of force networks arising from clusters of simulta-
neously contacting grains. We find that � grows with packing
fraction, diverges at a finite packing fraction, and has mea-
surable effects on the contact forces between grains. The
correlation measurement also provides a natural boundary
between dilute flows where only binary collisions occur and
dense flows where force networks emerge.

We begin in Sec. II by briefly outlining the phenomenol-
ogy of granular shear flow to define the exact regime we will
be studying. In Sec. III we discuss the numerical algorithm
used to simulate shear flow. In Sec. IV we introduce the
spatial force correlation measurement, which provides a
natural definition for a correlation length, and in Sec. V we
show how the size of the correlation length affects contact
forces between grains.

II. GRANULAR SHEAR FLOW: BASIC CONSIDERATIONS

If no external force is applied to a dry granular material in
the absence of gravity, it quickly loses all its kinetic energy
in dissipative collisions, and each grain comes to rest. If this
occurs for a dilute system there are no residual contacts be-
tween any grains and the total energy is zero. However, for
granular materials with larger densities, there are contacts
between grains in the relaxed state and a nonzero residual
energy remains due to grain deformation and friction.

If a shear stress is then applied to the system, motion
occurs only if the stress is large enough to overcome the
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energy stored in the contacts. The minimum stress needed to
initiate motion is called the yield stress; it is zero below a
critical packing fraction �c and is an increasing function of
packing fraction above �c �35–37�.

For granular shear flows with ���c, previous research
has demonstrated that the stiffness of the grains plays an
important role at all values of the shear rate �38�. This is
because grains are not able to rearrange to a configuration
where no contacts exist and the system moves between dif-
ferent configurations where the grains are always deformed.
Shear flows with ���c are characterized by slowly moving
quasistatic flows �39,40�, where force balance is upheld at all
times, and jamming �35–37�, where motion ceases for
stresses below the yield stress.

Conversely, for granular shear flows with ���c, it has
been demonstrated that the stiffness of the grains can always
be taken large enough so that it plays no role in the dynamics
�38,41–43�. This is because grains are always able to rear-
range to find free volume, and the system moves between
different configurations with minute grain deformation. In
this regime inertial terms are dominant, and an invariance in
Newton’s equations �44�. proves that the dynamics are con-
trolled exclusively by the shear rate �̇ �45�. For these inertial
flows the stress tensor is proportional to �̇2, which is referred
to as Bagnold’s scaling and has been observed in experi-
ments �46� and simulations �41,42,45�.

In this paper we consider only inertial flows of granular
materials with ���c, in the limit of infinite stiffness. This
allows us to investigate a wide range of packing fractions,
from zero to �c, and explore how correlations between grains
naturally emerge in this range. In particular, we measure spa-
tial force correlations and observe that they decay exponen-
tially with a characteristic length scale �. By measuring dis-
tributions of contact forces, we demonstrate that only binary
collisions are relevant for small �, and simultaneous contacts
have quantitative effects on contact forces for large �. This
allows us to define an important packing fraction �bc, where
the crossover occurs between binary collisions and force net-
works. This crossover is accompanied by a signature in the
contact force probability distribution function that has been
observed previously in experiments on hopper flow �47�.

The transition at �bc is purely dynamical and would not
occur if �̇=0. We find that the value of �bc depends on the
amount of energy dissipated at each contact, but it is always
the case that �bc is strictly less than �c. This separates the
inertial regime into a dilute inertial regime, where only bi-
nary collisions are relevant, and a dense inertial regime,
where clusters of contacting grains form into complex force
networks. The network transition at �bc arises due to steric
exclusion and is independent of the roughness of the grains.
A schematic of the different regimes of granular shear flow is
displayed in Fig. 1. Here we focus on flows with ���c in
order to establish the existence and importance of �bc.

III. SIMULATIONS

We perform simulations of inertial granular shear flow in
two dimensions using the contact dynamics �CD� algorithm.
The CD algorithm was developed to model the dynamics of

dense collections of rigid grains �48–53� and can include the
effects of long-lasting, simultaneous contacts between
groups of grains. It is a fully dynamical and athermal algo-
rithm, with the motion of each grain determined at every
time step by integrating Newton’s equations.

To carry out the integration, the algorithm provides values
for the forces between each pair of contacting grains. In dry
granular materials, contact forces arise due to deformation of
the grains upon contact and friction between grains. The CD
algorithm considers the rigid limit in a self-consistent way,
where forces take on the precise value necessary to prevent
deformation, uphold Coulomb friction, and adhere to New-
ton’s equations �48–51�. If we use �̂ij to denote the unit
vector connecting the centers of two contacting grains la-
beled i and j, then the deformation produces a normal force
in the direction of �̂ij, and the interplay of friction and de-
formation produces a tangential force perpendicular to �̂ij.
These contact forces are dissipative and depend sensitively
on the velocities of the colliding grains �54�.

The CD algorithm determines the forces arising from
grain deformation by assuming that grains are infinitely rigid
and setting constraints on the total energy dissipated in each
contact. For two grains in contact that are approaching with a
relative velocity v�ij, the algorithm determines a contact
force such that the relative velocity in the next time step vij is
given by

vij · �̂ij = − ev�ij · �̂ij, vij � �̂ij = etv�ij � �̂ij . �1�

In this way, the relative velocities are altered by restitution
coefficients in the normal �e� and tangential directions �et�.
This procedure ensures that the momentum transferred be-
tween grains with nonzero relative velocities is at least that
which is supposed to arise from collision. Friction is in-
cluded by assuming that the grains have a coefficient of fric-
tion �. If the ratio of the tangential to the normal force ex-
ceeds �, then the grains are allowed to slip with a tangential
force equal to � times the normal force. Using these dynami-
cal constraints, contact forces can be determined at each time
step.

It is important to mention one subtlety of the algorithm:
because a constant time step is utilized, many contacts can
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FIG. 1. Schematic of the regimes of granular shear flow. Here
we explore inertial flows with ���c and show that there is a net-
work transition at �bc where force chain networks begin to form and
affect the dynamics.
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�and do� occur in each time step. In this case, all contacts are
assumed to occur simultaneously and the dynamical rule in
Eq. �1�, along with the friction constraint, is applied to each
contact. This leads to a set of coupled algebraic equations for
each group of contacting grains that is solved using an itera-
tive method. Therefore, the value of a specific contact force
depends not only on properties of the contacting grains, but
also on the properties of other grains in the connected cluster.
Physically this corresponds to the effects of contact forces
being propagated through a network of grains, much faster
than contacts are created and/or destroyed. The CD algo-
rithm explores the limit of infinitely rigid grains by assuming
that the propagation occurs instantaneously.

The limit of infinitely rigid grains has also been explored
in other simulations �38,41–43�. In one study �38�, Campbell
simulated soft spheres with a rigidity k in shear flow at con-
stant volume. He found that, for any packing fraction below
a critical value �c, k can be taken large enough so that no
macroscopic variables depend on its value. This study, along
with others �41–43�, establishes the validity of the “hard-
sphere” limit in granular shear flow.

Shear flows of hard-sphere granular materials always oc-
cur in the inertial regime �44,45�. Because the stiffness of the
grains does not play a role, the interactions between grains
are mediated by dimensionless quantities, as in Eq. �1�, and
the only time scale is set by the value of the external shear
rate �̇. Therefore, by dimensional analysis, it must be the
case that the pressure and the shear stress are proportional to
�̇2. This is Bagnold’s scaling �46�, which is a central charac-
teristic of granular flows in the inertial regime. Since hard-
sphere granular flows must always occur in the inertial re-
gime, our simulations are constrained to lie below the
jamming transition at �c and always have zero yield stress.
However, we can explore granular flows arbitrarily close to
�c, and we have conducted simulations up to a packing frac-
tion of 0.84.

The value of �c in our system is ultimately determined by
the distribution of grain sizes. In the simulations presented
here we use a polydisperse collection of circular grains in
two dimensions. The grain diameters are chosen randomly
from a flat distribution with minimum and maximum diam-
eters given by �±	, with �=1.4 and 	=0.26�. We have
found that this amount of polydispersity restricts crystalliza-
tion. We estimate that the value of �c for this grain polydis-
persity, given the shearing algorithm, is between 0.84 and
0.85.

Finally, we comment on the shearing algorithm. We use a
numerical procedure to create a simple shear flow without
any boundaries. This is done using the Lees-Edwards bound-
ary conditions �55� along with the so-called Sllod �so named
because of its close relationship to the Dolls tensor algo-
rithm� �56� equations of motion to initiate shear flow imme-
diately. We discuss these standard procedures at length in an
earlier paper �45�. For our purposes here, it suffices to state
that this procedure produces a translationally invariant
simple shear flow with linear velocity profile. There are no
other gradients in the system, and the stress tensor, granular
temperature, and packing fraction are all constant. Although
this is an idealized simulation, we have shown that the re-
sulting rheology is identical to the rheology found in steady

state incline flow, far from the boundaries �45�. A screenshot
of our simple shear flow simulation is shown in Fig. 2.

IV. FORCE CORRELATIONS

In this section we present the central measurement of the
paper. We investigate spatial force-force correlations in
steady state shear flows through the measurement of the two-
point correlation function

C��� =

�
i=1

N

�
j=1

i−1

Fi · F j
�ri − r j − ��

�
i=1

N

Fi · Fi

. �2�

In this equation, Fi is the total vector force �sum of contact
forces� experienced by grain i at position ri and the sums are
taken over all grains that have at least one contact. The dis-
tance � ranges over the entire system size and is not limited
to grains in direct contact. We take the average value of C���
over at least 5000 time steps in steady state shear flow. A
nonzero value of C��� reveals that, on the average, two
grains separated by a distance � have forces that are corre-
lated.

For perfectly rigid granular materials, where there is only
a repulsive interaction between grains at contact, C��� gives
a quantitative measurement of the average effect of force
chains of length � in the material. A nonzero value of the
correlation indicates that two grains at distance � are con-
nected through a cluster of simultaneously contacting grains
and the force from one grain is being transmitted through the
network to the other grain. It thereby establishes that simul-
taneous contacts exist and that forces propagate through net-
works. Positive values of the correlation correspond to situ-
ations where the total forces on each grain tend to be aligned.

Because we make the measurement of C��� while the
material is in steady state shear flow, the correlations do not
reveal the presence of static structure. Instead, because con-
tacts between grains are being created and destroyed by the

FIG. 2. Snapshot of a granular simple shear flow. Each grain has
an average velocity in the x direction given by �̇y, where �̇ is the
shear rate. The center of the cell is defined as x=y=0.
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overall flow, the correlation function gives information on
the average size of dynamic structures that are fluctuating in
both space and time.

We will demonstrate that the correlation function depends

on the vector distance �=��̂ between pairs of grains, and that
it decays exponentially with �. In the following sections, we
first investigate the dependence of C��� on the magnitude of
�, thereby defining an isotropic correlation length �. Then we
investigate the full dependence of C��� and obtain the full
functional form of ����, which depends on the angle � be-
tween pairs of grains.

A. Measurements of C„�… and the length scale �

We begin by measuring the isotropic part of the correla-

tion C��� by averaging C��� over all directions �̂. In Fig. 3
we plot this directionally averaged correlation function C���
for a frictionless material with e=0.25.

The logarithm of the magnitude of the correlation func-
tion, log10�C����, is also plotted in Fig. 3. From these plots
we observe that the magnitude decreases exponentially, al-
though the decay is complicated by an oscillating function
that accounts for the sign of C���. The form of this oscil-

lating function is not universal and depends on the exact
values of the density and restitution. Nevertheless, as a first
approximation, we express the correlation function as C���
�exp�−� /��, which introduces a length scale � that quan-
tifies the large-� behavior of the correlations. The data in
Fig. 3 illustrate that this length scale increases with packing
fraction.

We find that the value of � is well approximated by its
expectation value

� =

�
0

�

d� �C���

�
0

�

d� C���
. �3�

In Fig. 3 we plot exp�−� /��, where � is determined for each
density from Eq. �3�, and we observe excellent agreement
with the measured exponential decays of C���.

In Fig. 4 we plot measurements of �, determined from Eq.
�3�, for all of the frictionless granular flows we have simu-
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FIG. 3. �a� The force correlation function C��� for e=0.25 and
�=0.81, where � is the distance between grains and � is the average
grain diameter. �b� Logarithm of the magnitude, log10�C����, for
packing fractions of �=0.6, 0.77, and 0.81, illustrating the exponen-
tial decay of the correlations. The lines correspond to the function
e−�/�, where � is determined from Eq. �3� and reported in Fig. 4.
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FIG. 4. �a� Length scale � for frictionless granular shear flows,
normalized by the average radius �, plotted for a wide range of
packing fraction � and restitution e. The value of � increases rapidly
for large packing fraction and asymptotes to �el /�	0.785±0.022
for small packing fraction. �b� Data for e=0 and multiple values of
the time step. Here dt corresponds to the time step we use in this
paper, which is smaller for larger packing fractions. The value of �
does not depend on the time step. �c� Data for e=0 and multiple
values of the particle number N. We use N
2500 for the data in
this paper. Finite size effects can be seen for 
N=100,��0.6� and

N=500,��0.8�. There is a large-N limit where � /� is independent
of system size.
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lated. The value of � quantifies the average extent of force
chains in the system and is an increasing function of density
for each value of restitution. Higher values of restitution
have lower values of �. This is consistent with the picture of
dynamic force networks forming as the material is sheared
due to energy dissipation upon contact. Indeed, in the limit of
e→1, the data in Fig. 4 suggest that no correlations exist.

The formation of correlations in sheared granular materi-
als is likely caused by inelastic collapse �57�. Collapsing
grains contact increasingly often, allowing a single grain to
have multiple contacts, even in the limit of perfectly rigid
grains �60�. While previous studies �57–59� have focused on
the initial stages of inelastic collapse, concluding that mul-
tiple collisions become important as the packing fraction is
increased, here we study the properties of the fully collapsed
clusters in the steady state. One of the major differences is
that the correlation length we measure does not depend on
system size, whereas the onset of inelastic collapse shows a
strong system size dependence for all sizes investigated �57�.
This makes it difficult to directly compare the onsets of in-
elastic collapse and force correlations. However, for all the
systems investigated here, if we compare the packing frac-
tion �bc�e� at which correlations first develop to the onset
���e� of inelastic collapse for a given system size �using the
values given in Ref. �57��, it is always the case that �bc�e�
����e�. This means that, as we increase the density for a
given restitution coefficient and system size, inelastic col-
lapse always occurs before force correlations develop.

For large values of the packing fraction, the value of �
increases rapidly. The maximum packing fraction we simu-
late is �max=0.84, but we were not able to determine the
value of � at �max for all values of restitution. This is be-
cause, for very large packing fractions and small restitution
coefficients, the correlation function we measure from Eq.
�2� does not decay to zero by the maximum length ��50
that we can access in our largest simulations of 100�100
grains. Since this implies that correlations extend beyond the
system size, we do not include these data.

For large values of the packing fraction, we conduct simu-
lations in increments of 	�=0.01. When e�0.5, we reach a
packing fraction where, if we increase the packing fraction
by 0.01, � is too large to be measured. The rapid growth of
the correlations at high packing fraction suggests that � is
diverging. We include a plot of � as a function of �c−� in
Fig. 5. We approximate �c=0.845±0.005, which is the
source of the horizontal error bars. As � approaches its maxi-
mum value �c, the value of � increases. Limits on the maxi-
mum system size preclude us from making definite state-
ments about the functional form of the divergence.

For small values of packing fraction and large restitution
coefficients, � approaches a limiting value of �el
= �0.785±0.022��, which we have determined by averaging
the values of � for e=0.92 and ��0.4. This corresponds to
the smallest correlation possible, which arises when the only
relevant interactions are binary collisions between grains.
For these small packing fractions, the sign of C��� is exclu-
sively negative and the exponential decay is not observed.
Indeed, in the limited simulations we have conducted with a
monodisperse collection at very low packing fraction, we

observe that C��� is zero for all values of � except �=�. In
the case of a polydisperse collection of grains, the form of
C��� for dilute flows depends on the relative probabilities to
have binary interactions between grains of different sizes,
and exponential decay is not observed since the correlation
function equals zero for all values of � larger than the maxi-
mum grain diameter. Even though exponential decay is not
observed in the limiting case of binary collisions between
grains, Eq. �3� still provides a useful measure of correlation
length that matches the exponential decay at higher densities.

The limiting value of 0.785 is related to the probability to
have a binary collision between grains of different diameters
and is equal to the correlation length that would be expected
in a perfectly elastic system where e=1 and no energy is
dissipated upon interactions between grains. Thus we denote
the limiting value as �el and expect that its numerical value is
related to the distribution of grain sizes. We have conducted
a limited number of simulations to determine the behavior of
�el for different grain distributions, and the results are plotted
in Fig. 6. Each grain distribution we consider is a flat distri-
bution with minimum and maximum grain diameters given
by �±	. As expected, �el /�=1 for 	=0. For large values of
	, �el depends linearly on 	 since the largest grains set the
correlations. The grain distribution we consider in this paper
corresponds to 	=0.26� and is designated by a solid data
point. Although this grain distribution happens to occur close
to the minimum, this is not relevant to the arguments in this
paper. We present the data in Fig. 6 to better understand the
origin of �el, and in particular why it differs from unity. We
will argue that the ratio � /�el signals the transition between
different regimes of shear flow, and it asymptotes to 1 for
small packing by definition.

The data we have presented for frictionless grains can
also be extended to situations where ��0. Adding friction
introduces a nonzero tangential force at each contact that
tends to increase geometrical frustration. Measurements of �
for frictional systems are plotted in Fig. 7 for e=0 and three
friction coefficients �. We see that the value of � diverges at
smaller � for systems with friction. This is to be expected,
since the additional constraints associated with tangential
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FIG. 5. Length scale �, normalized by the average radius �, as a
function of �c−� for many restitution coefficients e. We estimate
that the jamming transition occurs at �c=0.845±0.005 for the grain
polydispersity used here.
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forces can only increase the correlations. Interestingly, the
value of � for different friction coefficients is nearly identical
for ��2.5�. This is because clusters of simultaneously con-
tacting grains must exist before the effects of friction alter
the dynamics and correlations. We therefore expect that the
initial emergence of correlation at �bc is not sensitive to
changes in friction coefficient � and can be understood by
studying frictionless materials.

B. Connection to jamming

The data in Figs. 4 and 7 suggest that � diverges at a finite
packing fraction �c that depends on the friction coefficient
and possibly the restitution coefficient. This divergence is
related to the jamming transition �61� in granular materials,
where the shear modulus becomes nonzero and the system is
able to sustain a shear stress without yielding. In order to
make the transition from a flowing state to a jammed state, it
is necessary that a correlation length approach the size of the
system, and diverge in the thermodynamic limit. This is be-

cause force chains must percolate from the upper to the
lower shearing wall in order to counteract the applied shear-
ing force. The correlation length � quantifies the notion of
force chains, and we expect that the observed divergence of
� is a necessary condition for jamming.

However, there is no guarantee that the divergence of � is
also a sufficient condition for jamming, since it is possible
that force chains percolate long before the system jams. Nev-
ertheless, both theories �62,63� and simulations �35–37� have
found that percolation and jamming occur simultaneously,
which suggests that a granular system jams if, and only if, �
diverges. If this holds, our data suggest that the jamming
transition occurs at lower packing fraction as the friction
between grains increases.

For granular shear flows near jamming, spatial correla-
tions between grain velocities have been discussed theoreti-
cally �64� and measured in experiments �65� and simulations
�66�. While these correlations are different from the force
correlations measured here, they may have a similar origin.
In this study we consider perfectly rigid grains where forces
are transmitted instantaneously through networks, and equal
time forces thereby exhibit correlations. For grains with a
finite rigidity, the forces take a small amount of time to
propagate through the networks and might be best studied
via velocity correlations at different waiting times �66�.
While a connection between these correlations is likely, it
remains to be quantified.

C. Anisotropy in the angular dependence of �

We have also conducted measurements of the full direc-
tional dependence of C���. In this case, we observe that the
decay of the correlations can still be described by an expo-
nential, but the value of the correlation length depends on the

orientation �̂. In two dimensions this orientation can be
quantified by the angle � between � and the x axis. In Fig. 8
we plot the angular dependence of � for frictionless flows
with e=0 and three different packing fractions. These plots
reveal that � is not isotropic and the correlation between a
pair of grains depends on their orientation. For a simple
shear flow, correlations are created along the compressional
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FIG. 6. Equilibrium correlation length �el as a function of the
grain distribution of the system. We consider flat distributions with
minimum and maximum grain diameters given by �±	. The dis-
tribution considered in this paper is indicated by a solid circle.
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axis due to a higher number of grain interactions, and de-
stroyed along the dilational axis due to contacts being lost.

We note that the maximum value of the correlation length
occurs at approximately the same angle for each packing
fraction in Fig. 8. This trend is followed for other packing
fractions and restitution coefficients as well. In Fig. 9 we plot
the angular dependence of the length scale divided by its
average value: ���� /�. This collapses the data for a large
range of packing fractions and restitution coefficients onto
one curve. The collapse is not perfect, especially along the
dilational axis of the shear flow where the correlations are
small.

The common collapsed curve for all of the data in Fig. 9
demonstrates that � is anisotropic. The angular dependence
of � can be approximated as a Fourier series, including only
terms that are � periodic. We find that, as is the case for
other anisotropies in granular flow �67–72�, the functional
form of ���� is well characterized by the first two terms in
the Fourier series,

���� =
�

2�
�1 − a0 sin 2�� − �0�� , �4�

where � is the average value of the correlation length. The
solid curve in Fig. 9 is a fit to this equation, which estimates
the parameter values as a0=0.21 and �0=0.013. The value of
�0 is consistent with the axis of maximum compression for
the data we have gathered. This implies that larger values of
� occur near �=3� /4 because the compression induced by
the shear flow causes more grains to come into contact. Near
�=� /4, where � is a minimum, dilation reduces the magni-
tude of correlations and thereby the length scale. However,
we have found no simple explanation for the value of a0. We
suspect that the numerical value of a0 should be related to
the anisotropy in the contact distribution �70�. However, be-
cause the anisotropy in � remains constant over a range of
packing fractions and restitution coefficients, where the an-
isotropy in the contact distribution is not constant, the value
of a0 may have a simpler origin.

In this section we have measured spatial correlations be-
tween the total force on grains separated by a distance � in
two dimensions. In three dimensions, we expect the results to
be qualitatively similar. This is because, in all dimensions,
jamming occurs at a finite packing fraction �c and correla-
tions must exist that span the system. The onset of correla-
tions and their extent will surely depend on dimension, but
for given values of e and � there is a packing fraction �bc
��c where correlations become significant. For ���bc we
expect the extent of the correlations to increase continuously
and diverge at �c, analogously to the data we have presented
for two-dimensional systems.

V. THE EFFECTS OF CORRELATIONS
ON CONTACT FORCES

In the previous section we presented measurements of a
correlation length � that diverges at the jamming transition
and asymptotes to an elastic value �el at small packing frac-
tion. This length scale captures the decay of force correla-
tions and is related to the emergence of clusters of simulta-
neously contacting grains. In very dilute systems only binary
collisions are relevant, �=�el, and contact forces can be de-
termined from the properties of the two colliding grains.
However, as the packing fraction is increased, � also in-
creases, and the contact force between any two grains will
depend on the properties of the other grains in the cluster.
This is because, in the rigid grain limit, forces propagate
instantaneously through the network. Because the growth of
� is closely related to the nature of the force transfer—binary
collisions or force networks—we expect the contact forces to
depend on the value of �. A useful way to explore properties
of contact forces is to measure the contact force probability
distribution function �PDF� P�F�. This function encodes the
statistics of the contact forces: P�F�dF is proportional to the
number of contact forces in the range from F to F+dF.

To make the connection between contact forces and spa-
tial force correlations explicit, we begin by demonstrating
that the contact forces between pairs of grains cannot be
determined simply by assuming binary collisions when � is
large. To illustrate this point, we compare the statistics of the
actual contact forces to the forces we would calculate if we
assumed that only binary collisions occurred. If we make the
binary collision assumption, then the dynamical rule in Eq.
�1�, along with momentum conservation, determines the nor-
mal impulse in each collision. Dividing this impulse by the
algorithm time step yields the average force that would arise
over the time step dt. We label this force Fbc

ij , where i and j
represent the colliding grains and the label “bc” reminds us
that this force applies only to purely binary collisions. It is
simple to show that the value of the binary force is given by

Fbc
ij = �1 + e��ij��v�j − v�i� · �̂ij�/dt , �5�

where e is the normal restitution coefficient, �=mimj / �mi

+mj� is the reduced mass, v�i is the precollisional velocity of
grain i, and �̂ij is the unit vector connecting the centers of
grains i and j. All of these terms can be measured directly
from simulations.
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In Fig. 10 we plot measurements of the contact force dis-
tribution function P�F� for e=0.75 and six increasing values
of the packing fraction �. In each figure, we compare P�F�
with the statistics of the binary forces P�Fbc�. If these two
functions are the same then contact forces are well approxi-
mated by considering only binary collisions; if the functions
differ then we know that clusters of contacting grains affect
contact forces.

We indicate the value of � /�el for each plot in Fig. 10 and
immediately see that for small values of � /�el the data for
P�F� are well fitted by the line, which is a measurement of
P�Fbc�. However, as � increases, the presence of force net-
works changes the nature of the contact forces and we can no
longer make accurate predictions by assuming that only bi-
nary collisions occur. The transition occurs between the val-
ues of � /�el=1.22 and 1.28. Therefore � /�el=1.25±0.03
serves as an upper bound for the regime where the binary
collision assumption is reasonable. This value of � /�el sig-
nals the transition between collisional and noncollisional
flows for all restitution coefficients and packing fractions we
have investigated.

In cases when � /�el�1.25, force networks have formed
and simultaneous contacts produce measurable effects on the
forces between grains. In order to calculate the force between

two grains, it is not sufficient to consider only the properties
of the two contacting grains; rather, all of the grains con-
nected in the force network play an important role. This is
because the two contacting grains are being pushed together
by the other grains in the cluster and the contact force is
equal to the binary collision contribution from Eq. �5� plus a
contribution from the cluster.

The value � /�el=1.25±0.03 separates the regime where
only binary collisions occur from the regime where force
networks begin to form and affect contact forces. This is the
value of the length scale at which there is a clear deviation
between binary collisional forces and total forces. Measure-
ments presented later in this paper, and in the following pa-
per �20�, also place the network transition within these
bounds. Although this value of the length scale does not
change with restitution coefficient or friction, we would ex-
pect it to depend on the grain size distribution.

The techniques we used to determine the crossover in Fig.
10 can only be applied in simulations where the position,
velocity, and force on every grain are always known. How-
ever, we have also found a signature of the transition that can
be �and has been� observed in experiments of granular flows.
This signature relates to the small force behavior of the con-
tact force distribution function.
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FIG. 10. P�f� for systems with
e=0.75 and increasing values of
� /�el, where f is the contact force
F divided by the average value

F� �symbols�. These data are
compared with the line, where the
force is determined from Eq. �5�,
which assumes that only binary
collisions occur. We have normal-
ized both the total forces and bi-
nary collision forces in each plot
by their average values. There is
excellent agreement for � /�el

�1.25. For larger values of the
correlation length, clusters of in-
teracting grains form and the bi-
nary collision assumption does not
fit the data.
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In Fig. 11 we present data for the contact force distribu-
tion function P�F�. In particular, we plot log10P�f� for many
different values of the restitution coefficient and packing
fraction, where f is equal to the normal contact force F di-
vided by the average normal force 
F�. All of these curves
correspond to frictionless materials, but we have observed
that the statistics of the normal forces display the same be-
havior for frictional systems. Our measurements of P�f� have
been averaged over 5000 time steps in steady state shear
flow, and the different curves are vertically displaced in the
figure so each can be clearly seen. Each curve is labeled by
the value of � /�el and we immediately see that the behavior
at small f depends on the value of �. For � /�el�1.25 there is
a clear peak, whereas for � /�el
1.25 the peak disappears
and the maximum occurs at f =0.

This measurement once again defines a crossover around
� /�el=1.25. This is the transition where the microscopic in-
teractions change from being dominated by binary collisions
between grains to being dominated by clusters of grains,
forming force networks of size � /�el. When this network
transition occurs, the peak disappears and the most likely
force is no longer equal to the average force. This is because
grains have formed into transient clusters and the greatest
number of contacts are simply rolling over each other, which
produces a very small normal force. This moves the peak to
f =0 once the transition has fully developed and the average
force is not representative of most of the forces. Additionally,
as force networks become long ranged, the data show that
there is a greater probability of large forces, which arise from
a large number of grains in a cluster compressing two con-
tacting grains.

We have also taken data for P�F� close to the network
transition point for granular flows with e=0.75. In Fig. 12 we
plot the value of the force Fmax for which P�Fmax� is a maxi-
mum, as a function of packing fraction. Between packing
fractions of 0.766 and 0.767, our data show that the value of
fmax �equal to Fmax divided by the average force 
F�� makes
a jump from approximately 0.2 to zero. Within this small
range of packing fraction, the contact force PDF loses its
peak. The abruptness of the transition suggests that different
physical processes are occurring on either side of the transi-
tion and that the network transition is quite sharp.

The signature of the transition evident in our measure-
ments of P�f� has also been observed in other simulations
and experiments, but has never been connected to the forma-
tion of large-scale structure. Simulations of granular hopper
flow �73,74�, conducted using event-driven simulations
where only binary collisions are allowed to occur, have re-
ported that, as the hopper aperture is reduced and the density
of the packing increases, P�f� begins to lose its peak. This is
consistent with our results from Fig. 11 and suggests that the
correlation length � is relevant in more than just shear flows
of granular media. Additionally, the same behavior in P�f�
has been observed in experiments on hopper flow �47�,
which lends credibility to the result and suggests that it is not
an artifact of the simulation methods used here and in Refs
�73,74�, but rather a real effect in granular flows.

The results we have cited from hopper flow, and others
�75�, have been used to challenge the belief that the forma-
tion of a peak in P�f� is a signature of the jamming transition
�76,79�. In a wide variety of contexts, including incline flow
�76�, quasistatic flow �22,77�, and jammed granular materials
�31–33,78�, it has been observed that P�f� exhibits a maxi-
mum at f =0 �no peak� if the system is flowing, while a peak
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FIG. 11. Measurements of the contact force probability distribution function P�f�, where f is the value of the contact force divided by the
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at nonzero f forms as the systems jams. These observations,
coupled with similar results in Lennard-Jones glasses and
foams �79�, have been used to bolster the claim that the
formation of a peak in P�f� is a generic characteristic of the
jamming transition, and a necessary condition for the appear-
ance of a yield stress.

Our observations reveal that, in fact, there are two impor-
tant transitions encoded in the small-f behavior of P�f�.
First, at a low packing fraction, there is the network transi-
tion where interactions between grains change from binary
collisions to force networks. This occurs in the inertial flow
regime and is accompanied by a change in P�f� where the
peak that was present for small densities disappears and the
maximum value of P�f� occurs at f =0. Then, as shown else-
where, there is another transition at higher packing fraction
where the system develops a yield stress and the peak reap-
pears in P�f�.

In summary, we have measured contact force distributions
in this section to determine the effects of spatial force corre-
lations. We find that � /�el=1.25 separates the regime where
only binary collisions occur from the regime where force
networks form. This observation allows us to split the inertial
regime where hard-sphere granular flows exist into two dis-
tinct regions. At low packing fraction there is a “dilute re-
gime” where binary collisions are the dominant microscopic
interaction and � /�el�1.25. At high packing fraction there is
a “dense regime” where force networks exist but do not per-
colate through the system. This dense regime is characterized
by clusters of interacting grains with an average extent � /�el
in the range of 1.25�� /�el��. For dilute flows where only
binary collisions occur, a peak is visible in P�f�; as force
networks begin to appear in the dense regime, the peak dis-
appears.

The crossover at � /�el=1.25 defines the transition be-
tween interactions dominated by binary collisions and inter-
actions dominated by force networks. Therefore, we use this
value to define �bc�e�, which is the value of the packing
fraction below which only binary collisions are relevant
�shown schematically in Fig. 1�. This function is plotted in
Fig. 13 using the data for � from Fig. 4. This plot is for
frictionless materials �=0, but increasing the value of �
does not change the curve. This is because, as we saw in Fig.
7, the effects of friction do not take hold until � is much
larger than 1.25�bc. Thus �bc is an important packing fraction
for all values of friction, and we see that it is an increasing
function of e. This is because larger e produces less energy
dissipation and restricts grain clustering. The data in Fig. 13
imply that as e→1 then �bc→�c�0.845, which is the pack-
ing fraction at which the system jams. This means that, as
grains become perfectly elastic and no energy is dissipated at
contacts, then binary collisions describe the interactions for
all values of packing fraction before jamming.

VI. CONCLUSIONS

We have measured correlations between grain forces in
inertial shear flows. These correlations decay exponentially
with a characteristic length scale � that diverges at the jam-
ming transition and asymptotes to an elastic value �el in the

dilute limit. By investigating the statistics of contact forces
between grains, we have shown that � /�el=1.25 splits the
inertial regime into dilute flows, where all forces arise from
binary collisions between grains, and dense flows, where
force chain networks begin to form. We denoted by �bc the
packing fraction at which � /�el=1.25 and found that the
value of �bc depends on the restitution coefficient, but is
always less than the packing fraction �c at which the system
jams. This phenomenology is illustrated in Fig. 14.

The crossover from the dilute to the dense regime is ac-
companied by a qualitative change in the nature of contact
forces between grains, measured using the contact force dis-
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tribution function P�f�. For shear flows in the dilute regime
P�f� has a peak at nonzero f , whereas for shear flows in the
dense regime there is no peak. This raises interesting ques-
tions about the nature of the transition that occurs at �bc. We
observe that the average coordination number z is equal to 1
for flows with ���bc and is greater than 1 for ���bc. Fur-
ther investigation of the scaling behavior of granular flows
very close to �bc is needed to bring further insight to the
physics near the transition.

From a wider viewpoint, the presence of spatial correla-
tions changes the assumptions that can be made when mod-

eling properties of the system. We explore the theoretical
implications of correlations in the following paper �20�.
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